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Abstract
In this paper we have studied the electronic structure of bcc FexCr1−x alloys in the
ferromagnetic phase using three different techniques: augmented space recursion coupled with
tight-binding linearized muffin-tin orbitals (TB-LMTO-ASR), the coherent potential
approximation based on the Korringa–Kohn–Rostocker method (KKR-CPA) and the special
quasi-random structure technique linked with the projector augmented wave (PAW-SQS). The
aim was to provide a comparison between the different methods and examine their strengths
and weaknesses vis-à-vis one another.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Scientific literature lists several calculational methods to
deal with the electronic structure and phase stability of
disordered alloys. These include both methods for solving the
related Kohn–Sham equation and also different techniques for
dealing with the effect of disorder-induced fluctuations in the
configuration space of random variables of the Hamiltonian.
Each method claims superiority for itself. For comparison,
therefore, it is important to select the most successful
techniques available and apply them on an alloy system where
there has already been extensive experimental studies. This
will allow us to carry out calculations using these techniques
with controlled and comparable approximations: something
which cannot be ensured in diverse works by different groups.
Such a study will give us a clear picture of the comparative
strengths and weaknesses of these methods vis-à-vis one
another. An alloy system, like FexCr1−x , is an excellent choice

5 Permanent address: Advanced Materials Research Unit, S N Bose National
Center for Basic Sciences, JD-III, Salt Lake City, Kolkata 700098, India.

on which to carry out such a comparative analysis. This is the
basic aim of the work presented here.

The reason for the extensive interest in FeCr alloys
is in its various possible practical uses. Industrial steels
with chemical compositions based on an FeCr matrix with
Cr concentrations ranging from 2 to 20 at.% are possible
candidates for the design of structural components in advanced
nuclear energy installations like the Generation IV and fusion
reactors [1, 2]. Of the various multilayer systems which
show oscillatory exchange coupling of ferromagnetic films
across non-ferromagnetic spacer layers, Fe/Cr multilayers have
shown the greatest promise [3]. It has been felt that, in order
to understand multilayers, we must first attempt to understand
binary inter-metallic compounds as well as random binary
alloys: the former, since in the B2 structure they are naturally
occurring models of single atomic multilayers, and the latter,
in particular, to give insight into disordering at the multilayer
interfaces [4].

There are ample experimental investigations on this alloy
system. These include studies on structural phase stability
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and phase diagrams [5–13], spinodal decomposition [14, 15],
structural studies from x-ray scattering [16, 17], inelastic
neutron scattering [18, 19], Mössbauer [20–24], heat
capacity [25–27], thermopower [28], the magnetic phase
stability [29] and magnetic phases of FexCr1−x alloys [30–40].
They provide a variety of information, e.g. variation of
magnetization with band filling [41], moment distribution in
dilute Fe-based alloys [42], composition dependence of high-
field susceptibility [43], low-temperature specific heat [44] and
resistivity anomaly [45].

Theoretical investigations have been carried out on the
phase stability of Fex Cr1−x alloys [46–53]. There have been
several calculations on ordered inter-metallic FeCr in the B2
structure using standard electronic structure methods [54–57].
Studies on FeCr in the σ phase have also been reported [58].

Magnetism in this alloy has been studied by the spin-
polarized KKR-CPA method by many authors [56–59]. Butler
et al [60] have studied the GMR effect in the concentration
range of (0.5 < x < 0.1) and the antiferro-to ferromagnetic
transition at the critical concentration of x = 0.3. Dederichs
et al [61] have discussed the Slater–Pauling curves of
FexCr1−x . Kulikov et al [62] have shown that body-centred
cubic Fe moments are fairly independent of Cr concentration,
while the opposite is true for Cr.

Jiang et al [63] have studied the local environment effect
on the formation enthalpy, magnetic moments, equilibrium
lattice parameter and bond lengths using special quasi-random
structure (SQS), a concept proposed by Zunger et al [64]. With
a 16-atom SQS supercell they have shown that, even for a
lattice-matched system like Fex Cr1−x , the average Cr–Cr, Cr–
Fe and Fe–Fe bond lengths are quite different. For magnetic
moment calculations they have obtained reliable results in the
concentration range of x > 0.3. Olsson et al [65] have
also studied the anomalous stability of Fe-rich Fex Cr1−x using
both exact muffin-tin orbitals coherent potential approximation
(EMTO-CPA) and the projector augmented wave SQS (PAW-
SQS). These authors have scanned a much wider composition
range using a 128-atom SQS supercell.

The foregoing discussion and the extensive references
justify our choice of the Fex Cr1−x alloy system for our
comparative study. We shall identify a few of the first-
principles electronic structure methods for disordered alloys
which we believe to be the most accurate and make a
comparative analysis of results obtained for Fex Cr1−x . A
comparative study of different properties like density of states
and magnetic moments have not been studied using electronic
structure methods coupled with different approximations
dealing with disorder. Our work will provide insights into
the advantages and drawbacks of these techniques and give
us confidence in their use for future studies on different alloy
systems.

We have identified three electronic structure methods as
being successful for disordered substitutional binary alloys:
the Korringa–Kohn–Rostocker-based mean-field coherent
potential approximation (KKR-CPA) [66], the projector
augmented-wave-based supercell calculations on special quasi-
random structures (PAW-SQS) [64] and the tight-binding
linear muffin-tin-orbitals-based augmented space recursion
(TB-LMTO-ASR) [67].

The KKR and its linear version, the LMTO, both based on
a muffin-tin modelling of the effective electron–ion potential,
are among the accurate techniques for the solution of the
Kohn–Sham equation. The form of the secular equation
makes them suitable for the study of random substitutional
alloys, where the disorder-induced scattering is local. Of
course, LMTO, being a linearized approximation to the KKR,
is expected to be less accurate. However, if the energy window
around the linearization energy nodes is not too large, the
LMTO estimates energies with reasonable tolerances. Unless
we are interested in estimating very small energy differences or
over large energy windows, the LMTO is good enough and has
the great advantage that its secular equation is an eigenvalue
problem rather than the more complicated functional equation
of the KKR. In the PAW, as implemented in the VASP
code [68]–[70], the electron–ion potential is described by a
marriage between the pseudo-potential and features of the
augmented plane wave (APW) methods [70, 71].

Methods to deal with disorder fall into three categories.
In the first category belongs the single-site mean-field CPA.
This approximation has been eminently successful in dealing
with a variety of disordered systems. Of all the single-
site approximations, the CPA alone maintains the essential
Herglotz6 analytical properties and lattice translational
symmetry of the averaged Green function. However, whenever
there is either strong scattering due to disorder-induced
configuration fluctuations, as in dilute, split-band alloys or
when local environment effects like short-ranged ordering,
clustering and segregation, or local lattice distortions due to
size mismatch of the constituent atoms become important, the
single-site-based CPA becomes inadequate.

In the second category belong the generalizations of
the CPA, of which the augmented-space-based methods:
the itinerant CPA (ICPA) [72] and the augmented space
recursion [73] (ASR), are foremost. They too not only
retain the necessary analytic (Herglotz) properties and lattice
translational symmetry of the averaged Green function, as the
CPA does, but also properly incorporate local environment
effects.

In the third category belong the supercell-based calcula-
tions. Zunger [64] suggested that, if we construct a supercell
and populate its lattice points randomly by the constituents so
as to mimic the concentration correlations in the random alloy,
a single calculation with this superlattice should approximate
the configuration average in the infinite random system. This
special quasi-random structure (SQS) approach has been used
to incorporate short-ranged order and local lattice distortions in
alloy systems. Certainly, in the limit of a very large supercell
this statement is the theorem of spatial ergodicity. This the-
orem provides the explanation of why a single experiment on
global property of a bulk material most often produces the con-
figuration averaged result, provided the property we are look-
ing at is self-averaging. How far this approach is accurate with
a small cluster of, say, 16 atoms, is a priori uncertain. We shall
use the SQS method for averaging as well and compare this
with our mean-field and ASR results.
6 A complex function f (z) is called Herglotz if (a) its singularities lie on
the real z axis, (b) Sgn(Im f (z)) = −Sgn(Im z) and (c) f (z) ∼ 1/z as
z → ±∞ + i0.
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Before we proceed further, we should note that all three
methods, described earlier, to deal with disorder are essentially
real space approaches. The disorder is substitutional and
at a site. There is a fourth technique recently introduced
based on a reciprocal-space renormalization method: the non-
local CPA. The basic technique was introduced by Jarrel and
Krishnamurthy [74] and applied to CuZn alloys by Rowlands
et al [75]. The method is capable of taking into account
environmental effects and short-ranged ordering. As expertise
in this method was not available to us we could not include it in
this work. Once work on FeCr is available using this technique,
it would be interesting to compare those results with ours.

A systematic comparison between these calculations will
allow us to ascertain, for example, whether the CPA is indeed
inadequate in some situations and how far the augmented-
space-based techniques or the SQS improve matters.

2. Computational details

The KKR-CPA calculations were based on the total energy
formalism by Johnson et al [76] as implemented in the
MECCA code [77, 78]. The 3d states of Fe and Cr were
put in the valence band. All calculations were done using the
atomic sphere approximation (ASA) with equal-sized Fe and
Cr atomic spheres. All angular momentum expansions include
up to �max = 3. A semicircular contour in the complex plane
with 20 points was used to integrate the Green function over
energy. At each energy, the Brillouin zone integration was
performed by a special k-point 20 × 20 × 20 mesh.

For recursion in augmented space we have checked the
convergence of the Fermi energy and the first three moments of
the density of states with both the number of nearest-neighbour
shells used as well as the number of recursion steps before
termination (see the discussion on convergence by Haydock
and coworkers [79–81] and Chakrabarti and Mookerjee [73]).
The advantage with disordered systems is that the fine structure
in the density of states is smoothed by disorder scattering and
the convergence of recursion is much faster than in periodic
solids. The results quoted in the paper were for six nearest-
neighbour shells in augmented space and twelve steps of
recursion after which the Beer–Pettifor terminator [82] was
used to estimate the asymptotic part of the continued fraction
expansion of the averaged Green function. Since the averaged
density of states for disordered alloys is smoother and has
less structure as compared with that for a periodic system, the
convergence is faster.

The PAW potentials for Fe and Cr were generated by
including their 3d states in the valence configuration. The core
radii for the PAW potentials were 1.22 and 1.32 Å for Fe and
Cr, respectively. 4×4×4 Monkhorst–Pack mesh was used for
summation of charge densities over the Brillouin zone. The
plane wave cutoff energy was set to 400 eV. All the atoms
in the quasi-random supercell were relaxed till the Hellman–
Feynman force on each ion was less than 0.01 eV Å

−1
.

In all three implementations, we have used the Perdew–
Burke–Ernzerhof (PBE) exchange–correlation functional [83].

In most alloy systems where the constituents are not iso-
electronic, there is always charge realignment on alloying. As

a result, in the muffin-tin based methods, the atomic spheres
which were neutral in the pure constituents may become
charged and contribute a significant Madelung energy. The
evaluation of this Madelung energy for ordered compounds
is quite straightforward, but in a disordered alloy, where
the charged spheres are randomly distributed on the lattice,
estimating the Madelung energy accurately is not an easy
problem. No completely satisfactory method is available to
date. Kudrnovský and Drchal [84] have suggested using
different atomic radii for the constituents in such a way that
average total volume is conserved, maintaining the overlap
below a threshold value (15%), and such that these spheres
are approximately neutral on the average. This allows us
to ignore the Madelung contribution. Not only does this
procedure need us to vary the ratio of atomic radii of the
constituents r = RA/RB and is therefore very cumbersome,
Ruban and Skriver [85] have shown that local environmental
effects (beyond the CPA) destroys the strict charge-potential
alignment, and hence the possibility of choosing electro-
neutral atomic spheres by a single ratio r . This has been
discussed in detail earlier by us [86]. In an earlier work by
us (Sanyal et al [87]) we had used this idea of electro-neutral
atomic spheres to study FeCr. This earlier work did not observe
any sign of the experimentally observed reversal of the Cr
projected magnetic moment as a function of Fe concentration.

In this paper for two of the techniques (TB-LMTO-ASR
and PAW-SQS) we have chosen the procedure of Ruban and
Skriver [85] and define a one-electron potential as Vi =
−Qi/Rav, where i labels the constituents and Qi is the net
charge of the alloy component i in its own atomic sphere of
average radius Rav. We use a single average atomic sphere
radius for atoms. The Madelung energy is given by

EMad = β
Qi Q j

Rav
.

A universal parameter β has been proposed originally by
Ruban and Skriver [85]. However, a much better estimate
of this parameter may be obtained from a fit with an SQS
calculation. In this latter, since it is a supercell calculation
the estimation of Madelung energy is not difficult and the
parameter β is obtained by comparison with these estimates.
For the bcc lattice this value comes to 0.691 [88]. In that sense
our TB-LMTO-ASR calculations will contain a part that is a
marriage with the SQS method.

For the KKR-CPA we have used the ‘charge correlated’
model of Johnson and Pinski [89] for calculating the Madelung
energy. The parameter β in the ‘charge correlated’ model is
also taken as 0.691, which seems to be a universal parameter
for the bcc lattice.

3. Electronic and magnetic structure of FexCr1−x

alloys

3.1. Density of states

Our first step would be to examine the idea of spatial ergodicity
in the application of the PAW-SQS method. We shall verify the
convergence with cluster size, as suggested by Zunger et al
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Figure 1. Density of states per spin for (left column) Fe25Cr75, (middle column) Fe50Cr50, (right column) Fe75Cr25, calculated by PAW-SQS
with different sized quasi-random unit cells. Energies are measurements with respect to the Fermi energy (EF = 0).

[64]. We have carried out calculations on SQS supercells
of sizes 4, 8 and 16. Some results for three compositions
are shown in figure 1. These DOS are averaged over all the
different atoms in the cluster. We clearly see the eventual
convergence of the results with supercell size. The 16-atom
cluster is sufficient for our accuracy needs. We also note
that there is considerable fine structure in the DOS. We shall
argue later that this fine structure is an artefact of the finite
supercell. For comparison with our other bulk calculations we
shall smooth the raw SQS DOS using a Lorentzian broadening
with a small width.

Figure 2 compares the density of states for the spin-up and
spin-down states for Fex Cr1−x for compositions 25–75, 50–
50 and 75–25 at which the solid solutions in the bcc lattice
and the ferromagnetic state are stable at low temperatures.
All three methods, KKR-CPA, TB-LMTO-ASR and PAW-
SQS, were carried out within the LSDA self-consistency with
the same Ceperley–Alder exchange correlation functional with
Perdew–Zunger parametrization. The densities of states for
both approaches show remarkable similarities. The corrections
going beyond the CPA are small as compared with those in our
earlier work on Cux Zn1−x [90].

Of course there are differences in detail. The KKR-CPA
is a reciprocal-space-based approach while the TB-LMTO-
ASR is a real-space-based one and the approximations in the
two cases are different. The KKR-CPA is based on a single-
site mean-field and relevant Brillouin zone integration involves

techniques like tetrahedron integration. The TB-LMTO-
ASR expands the configuration-averaged Green function as
a continued fraction and the main approximation involves
calculation of its asymptotic ‘terminator’. As compared with
an earlier work on CuxZn1−x [90], where the ASR showed
considerable improvement over the CPA, in this particular
alloy system the differences are less prominent, except in the
very dilute limit. This is an important observation, and we
should be careful in making general and strong statements
about the efficiency of one method over the other.

The middle column shows the PAW-SQS DOS for all three
compositions. The raw DOS data in the SQS has considerable
microstructure as compared to the CPA or ASR. We believe, as
stated earlier, that these structures are artefacts of the supercell
translational symmetry. The imaginary part of the self-energy
which arises due to disorder scattering in the CPA or ASR
is per se absent in SQS calculations. This ‘lifetime’ effect
smooths the CPA or ASR density of states and gives it a larger
width as compared to the SQS. If we enlarge the supercell to
sizes larger than 16 (which we have used here) or carry out the
calculations for more k points in the Brillouin zone, we expect
the differences to be less prominent. The results shown here
are smoothed by giving a small imaginary part to the energy.

Although the densities of states for all three techniques
are very similar, it would be interesting to study their shapes in
greater detail. Haydock [79], in his critique of the recursion
method, argued that the density of states is perhaps not the

4
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Figure 2. Element projected and total densities of states for the spin-up states (upright curves) and spin-down states (inverted curves) for
Fex Cr1−x : red, dotted–dashed curves are for Fe projected DOS, blue dashed curves for Cr projected DOS and black full curves are the total
DOS. Results are shown for various compositions: (top row) 25–75, (middle row) 50–50 and (bottom row) 75–25 in the ferromagnetic, bcc,
disordered phase. The energies are shown with respect to the Fermi level as the reference level. The left columns are calculated using
KKR-CPA, the middle column PAW-SQS and the right column TB-LMTO-ASR. The SQS DOS are smoothed by giving the energy a small
imaginary part 0.01 Ryd. All energies are measured from the Fermi energy.

best property to compare between different approximations,
because it is unstable to small perturbations. Thouless [91]
has argued that the spectral density arising out of extended
states in a disordered system is extremely sensitive to small
perturbations. Minor differences in approximations lead to
relatively large changes in the spectral density. Haydock
suggested that it would be more proper to compare integrated
moment functions like Mn(E) = ∫ E

−∞ dE ′(E ′)n n(E ′).
Examples are the integrated density of states, the Fermi and
band energies and the various energy moments of the density of
states. In fact, most physical properties are integrated functions
of this kind.

Figure 3 shows the first three moments of the density of
states Mn(E) = ∫ E

−∞ dE ′E ′n n(E ′) with n = 0, 1, 2. Since
M0(E) is the integrated DOS, M0(EF) is the same for all three
methods. The moments match well throughout the energy
range up to the Fermi energy with the relative deviations being
no more than 10% throughout the energy range of interest.
We notice, of course, a systematic trend between the three

techniques. The SQS always gives a density of states which
is narrower than the CPA or ASR. This is clear from the
second moment function. Also, the ASR gives density of states
distributed wider in energy than either the CPA or SQS. We
believe this is because it includes correlated disorder scattering
from clusters which is absent in the CPA and contributes to the
self-energy. Simply from the density of states there is little to
choose between the different methods.

To understand why all three methods work well for FeCr
but only the ASR and SQS gave accurate results for CuZn,
let us look at figure 4 which shows the spin and constituent
projected DOS for Fe50Cr50. The projected DOS show rather
interestingly that for the down-spin electrons the positions of
the centres of the d-bands of Fe and Cr are almost degenerate
and strongly hybridize. However, the d-bands of the up-spin
electrons are separated in energy. FeCr is then only a partially
split-band alloy. This implies that for the up-spin electrons
the ‘electrons travel more easily between Fe or between Cr
sites than between unlike ones’ [75]. So when the alloy

5
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Figure 3. The first three moment functions for three compositions of Fex Cr1−x : (left column) 25–75, (middle column) 50–50, (right column)
75–25. The top row gives M0, the middle row M1 and the bottom row gives M2. In each panel the dashed curves are PAW-SQS, the
dashed–dotted curve TB-LMTO-ASR and the full curve KKR-CPA. All energies are measured from the Fermi energy.

Figure 4. Spin and component projected DOS for Fe50Cr50 calculated by (left) TB-LMTO-ASR and (right) PAW-SQS. The SQS DOS are
smoothed by giving the energy a small imaginary part 0.01 Ryd. All energies are measured from the Fermi energy.

orders and unlike sites sit next to each other, the overlap
integral between the unlike sites is lower, and for up-spin the
density of states narrow. For the down-spin bands this effect
is not present. CuZn alloy is a fully split-band one, and it

is in the dilute limit of such alloys that CPA is known be
inaccurate.

It would be interesting to see how far our theoretical
predictions of the densities of states are supported by
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Figure 5. (Top) Density of states calculated from TB-LMTO-ASR
for α = −1 (dashed lines) compared with that of the ordered B2
structure (full lines) and for α = 1 (dashed lines) compared with the
segregated pure Fe and pure Cr density of states (full lines). (Bottom)
The same as above, calculated from the PAW-SQS. Ordered and
segregated calculations were done by TB-LMTO. All energies are
measured from the Fermi energy.

experiments. Valence band spectroscopic studies on bulk FeCr
alloys have been rare. There have been x-ray photoelectron
spectra (XPS) studies by Terebova et al [92] on Fe86Cr14.
If we look at figure 1 of the above-referenced article [92],
which shows the XPS intensity variation with binding energy,
the characteristic peaked structures at energies 0.04, 0.1, 0.17
and 0.25 Ryd may be compared with the peaked structures
in our valence band density of states shown in our figure 2.
More common is photo-emission spectroscopy (PES) on
spinels based on FeCr as a building block. These show
giant magnetoresistivity and hence are of interest. Examples
are FeCr2S4 and Fe0.5Cu0.5Cr2S4 [93]. The structure of
chalcogenide spinels differs from the bcc and there are extra
constituents. Therefore we expect it would be difficult to
compare these experimental results with our theoretical data.
However, the main signature structures due to the Fe and Cr
d states near the Fermi level, as seen from our theoretical
calculations, are also evident from figures 3 and 5 of the work
by Kang [93].

3.2. Short-ranged ordering

The phase diagram of Fe–Cr is simple at high tempera-
tures [94] and a complete range of bcc solid solutions ex-
ists from 1093 K to the solidus. Alloys quenched from these
temperatures retain their bcc structure. However, the alloys
are not homogeneously disordered. Neutron scattering experi-
ments [41] indicate that short-ranged clustering exists in these
quenched alloys, leading to a miscibility gap at temperatures
lower than 793 K. The single-site CPA cannot deal with short-
ranged order as the latter explicitly involves independent scat-
tering from more than one site. Attempts to develop generaliza-
tions of the coherent potential approximation (CPA) including
effects of short-ranged order (SRO) have been many, spread
over the last several decades. Many of them fail the analytic-
ity test. Mookerjee and Prasad [95] generalized the augmented
space theorem to include correlated disorder. However, since
they then went on to apply it in the cluster CPA approxima-
tion, they could not go beyond the two-site cluster and that too
only in model Hamiltonians. The breakthrough came with the
augmented space recursion (ASR) approach proposed by Saha
et al [96, 97]. The method was a departure from the mean-field
approaches which always began by embedding a cluster in an
effective medium which was then obtained self-consistently.
As discussed earlier, here the Green function was expanded
in a continued fraction whose asymptotic part was obtained
from its initial steps through an ingenious termination proce-
dure [79]. In this method the effect at a site of quite a large
environment around it could be taken into account depending
how far one went down the continued fraction before termi-
nation. The technique was made fully LDA-self-consistent
within the TB-LMTO approach [73] and several applications
have been carried out to include short-ranged order in different
alloy systems [86]. Details of the formalism has been described
in detail in an earlier paper [90].

We have already stated that the aim of this paper is
to compare the three techniques KKR-CPA, TB-LMTO-ASR
and PAW-SQS. For uncorrelated disorder we have seen that,
although there are differences in detail, the three techniques
give almost similar results. However, when SRO is taken into
account, the CPA is unable to handle this problem since it
is a single-site approximation. We shall, therefore, compare
the TB-LMTO-ASR and PAW-SQS for Fex Cr1−x in the 50–
50 composition. Construction of quasi-random structures
including SRO has been described earlier by Zunger and
coworkers. We have used the 16-atom supercell for these
calculations.

We have carried out the TB-LMTO-ASR and PAW-
SQS calculations on Fe50Cr50 including short-ranged ordering
described by the nearest-neighbour Warren–Cowley parameter
α(−1 � α � 1). The Fe and Cr potentials are self-
consistently obtained via the LSDA self-consistency loop. The
same exchange–correlation functional was used as for the
uncorrelated disorder case for both methods. All reciprocal-
space integrals were carried out by using the generalized
tetrahedron integration for disordered systems introduced by
us earlier [98].

The second and fourth panels in figure 5 show the density
of states with α = 1 (dashed curves) using the TB-LMTO-ASR

7
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Figure 6. (Top panel, left) Compendium of experimental results on the averaged magnetic moment in Fex Cr1−x . The dashed line is fitted to
the TB-LMTO-ASR results. (Top, right) Average magnetic moment in Fex Cr1−x as a function of the average number of electrons per atom.
These are from the TB-LMTO-ASR work. (Bottom panel) Local moments on Fe and Cr and average magnetic moment in Fex Cr1−x as
functions of composition. (Left) from TB-LMTO-ASR, (middle) from KKR-CPA, (right) from PAW-SQS. The filled circles are theoretical
results, while filled triangles and inverted triangles are experimental data.

and PAW-SQS, respectively. Positive α indicates a clustering
or segregating tendency. Compare these with the full curves
which are a concentration-weighted sum of the density of states
of Fe and Cr. We note first that there is a close resemblance
between the ASR and SQS results. For α = 1 there is still
residual long-ranged disorder. This causes smoothing of the
bands with respect to the pure materials. The weighted sum
DOS ignores the intra-cluster interactions: as a result, some of
its structures like the peak at −0.2 Ryd below EF appear to be
shifted and are not well reproduced by the SRO DOS by either
of the two techniques.

The top and third panels in figure 5 show the density of
states with α = −1 (dashed curves) using the TB-LMTO-
ASR and PAW-SQS, respectively. α = −1 indicates nearest-
neighbour ordering. On the bcc lattice at 50–50 composition
we expect this ordering to favour a B2 structure. We can
compare the SRO results with the density of states for the
B2 structure shown as full curves. Here the ASR seems
to reproduce the dip in the DOS around −0.05 Ryd below
the Fermi energy better than the SQS. We have to realize
that, as we have taken only the nearest-neighbour short-
ranged order, α = −1 does not imply perfect long-ranged
ordering. Thus the detailed structure, like the sharp peak
at −0.25 Ryd below the Fermi energy, is not reproduced,
while the several structures between −0.1 and −0.2 Ryd

below the Fermi energy are smoothed into a large humped
structure.

3.3. Magnetic moments

Experimental work on magnetism in Fex Cr1−x alloys has a
long history [29, 41, 42, 99–101]. A series of theoretical
approaches using different electronic structure methods and
usually the CPA followed the experiments [56, 57, 59, 4].
Finally, Cieślak et al [43] gathered together results for both
the Curie temperature and the average magnetic moment
from resistivity minima [45], specific heat anomaly [44] and
elastic measurements [102]. A compendium of the acceptable
experimental results on the average magnetic moments for
different compositions is shown in figure 6 (top left). Results
from different experiments are shown by different symbols.
The TB-LMTO-ASR theoretical results which fit the curve
m(x) = 2.44x − 0.244 is shown by the dashed curve. The
KKR-CPA and PAW-SQS predictions for the total magnetic
moment per atom are almost the same. The theoretical
predictions from all these methods agree well with the
experimental results.

Figure 6 (bottom panel) shows the variation of the
local and average magnetic moment as a function of Fe
concentration of the alloy studied from the KKR-CPA, TB-
LMTO-ASR and PAW-SQS methods. The results are in
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good agreement with the few experimental observations
available. They show that the local Fe moment with increasing
Fe concentration remains almost constant over the entire
concentration range while the Cr moment changes its sign
(x > 0.4) from low positive value to very high negative
value. Earlier studies have also observed similar behaviour.
The KKR-CPA and TB-LMTO-ASR are in good agreement
for the Fe local magnetic moment, while the agreement is
less close for the local moment on Cr. Unfortunately, there
are no experimental data on the local moment on Cr. This
is in contrast to the much better reproduction by the TB-
LMTO-ASR of the local moment on Ni in Ni-based alloys, as
compared to the CPA. This is because the fragile moment of Ni
is dependent strongly on its immediate neighbourhood, which
cannot be adequately described by the single-site CPA [86].
The moment on Cr is less dependent on the configuration
of its immediate neighbourhood and the CPA here is not a
bad description. We note that the experimental dip in the
local magnetic moment at 50–50 composition is much better
reproduced by the PAW-SQS than the other two methods.
Both the ASR and the SQS show a more rapid increase in
the negative local moment of Cr than the CPA for higher
concentrations of Fe.

From figure 2 we see that the Fermi energy is pinned to
the minimum of the minority spin density of states. But for
x > 0.5 the majority spin density of states is entirely filled.
It shows that, with increasing Fe concentration, the additional
electrons are added mainly to the spin-up d band. As we scan
through the concentration range the Cr spin-up density of states
shows major (x > 0.7) variation. This is understandable as we
see that initially, for low x compositions, Cr d-up orbitals tend
to acquire more charge than d-down ones, but for x > 0.5
compositions the reverse phenomenon is observed. In our
calculation this is the critical concentration at which the Cr
projected magnetic moment reverses its sign.

Figure 6 (top right panel) shows the variation of average
magnetic moment against the average number of electrons.
This is the Slater–Pauling curve and it shows an almost linear
variation up to x = 0.8, above which the Cr moment changes
very rapidly to larger negative values. This observation is in
accordance with earlier studies.

4. Summary

We have used three different techniques for the calculation of
the electronic structure of fully disordered FexCr1−x alloys:
the KKR-CPA, the TB-LMTO-ASR and the PAW-SQS. Each
of the methods have their own distinct approximations and
the aim was to determine, for this specific alloy system, their
suitability and relative accuracy. Unlike the earlier study of
Cux Zn1−x [90], we find agreement in the shapes of the density
of states and their energy moments for all three techniques.
The local and averaged magnetic moments are also very
similar, except for the Cr local moments in the dilute Cr limit.
Unfortunately, experimental data for the Cr local moment in
this limit was not available. The difference in the average
magnetic moment in the dilute limit between KKR-CPA, PAW-
SQS and TB-LMTO-ASR is too small to warrant comment.

The single-site CPA cannot effectively address the
problem of short-range ordering. Neutron scattering
experiments on Fex Cr1−x alloys indicate a degree of short-
ranged ordering. Both the generalized ASR and the SQS
can tackle this problem. We have shown that, again, within
our error windows, the results of the ASR and SQS over the
variation of the Warren–Cowley SRO parameter are also very
similar.

Finally, as mentioned earlier, despite lattice matching
between Fe and Cr, local bond lengths are dependent on
the environment. Such local lattice distortions cannot be
addressed by the CPA. We had earlier shown that the ASR
can address the problem of local lattice distortions due to
alloying [103]. However, in its actual implementation only
random variation of bond lengths due to such distortions was
taken into account. Topological distortions over plaquettes of
atoms were discussed but were rather cumbersome to include
in the calculations. It is here that the SQS really wins over other
techniques. It can include random distortions of bond angles as
well within the quasi-random supercell.
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